FLASH: Fast Landmark Aligned Spherical Harmonic Parameterization for Genus-0 Closed Brain Surfaces

نویسندگان

  • Pui Tung Choi
  • Ka Chun Lam
  • Lok Ming Lui
چکیده

Surface registration between cortical surfaces is crucial in medical imaging for performing systematic comparisons between brains. Landmark-matching registration that matches anatomical features, called the sulcal landmarks, is often required to obtain a meaningful 1-1 correspondence between brain surfaces. This is commonly done by parameterizing the surface onto a simple parameter domain, such as the unit sphere, in which the sulcal landmarks are consistently aligned. Landmarkmatching surface registration can then be obtained from the landmark aligned parameterizations. For genus-0 closed brain surfaces, the optimized spherical harmonic parameterization, which aligns landmarks to consistent locations on the sphere, has been widely used. This approach is limited by the loss of bijectivity under large deformations and the slow computation. In this paper, we propose FLASH, a fast algorithm to compute the optimized spherical harmonic parameterization with consistent landmark alignment. This is achieved by formulating the optimization problem to C and thereby linearizing the problem. Errors introduced near the pole are corrected using quasiconformal theories. Also, by adjusting the Beltrami differential of the mapping, a diffeomorphic (1-1, onto) spherical parameterization can be effectively obtained. The proposed algorithm has been tested on 38 human brain surfaces. Experimental results demonstrate that the computation of the landmark aligned spherical harmonic parameterization is significantly accelerated using the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Spherical Quasiconformal Parameterization of Genus-0 Closed Surfaces with Application to Adaptive Remeshing

In this work, we are concerned with the spherical quasiconformal parameterization of genus-0 closed surfaces. Given a genus-0 closed triangulated surface and an arbitrary user-defined quasiconformal distortion, we propose a fast algorithm for computing a spherical parameterization of the surface that satisfies the prescribed distortion. The proposed algorithm can be effectively applied to adapt...

متن کامل

Landmark constrained genus zero surface conformal mapping and its application to brain mapping research

In order to compare and integrate brain data more effectively, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be mapped conformally to a sphere. Cortical surface is a genus zero surface. Therefore, conformal mapping offers a convenient m...

متن کامل

Optimization of Brain Conformal Mapping with Landmarks

To compare and integrate brain data, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be conformally mapped to a sphere. Therefore, conformal mapping offers a convenient method to parameterize cortical surfaces without angular distortion, ...

متن کامل

Spherical Conformal Parameterization of Genus-0 Point Clouds for Meshing

Point cloud is the most fundamental representation of 3D geometric objects. Analyzing and processing point cloud surfaces is important in computer graphics and computer vision. However, most of the existing algorithms for surface analysis require connectivity information. Therefore, it is desirable to develop a mesh structure on point clouds. This task can be simplified with the aid of a parame...

متن کامل

Combination of Brain Conformal Mapping and Landmarks: A Variational Approach

To compare and integrate brain data, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be mapped conformally to a sphere. Since the cortical surface of the brain is a genus zero surface, conformal mapping offers a convenient method to param...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015